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ABSTRACT

In the electromagnetic-induction (EMI) detection and discrimination of unexploded ordnance (UXO) it is impor-
tant for inversion purposes to have an efficient forward model of the detector-target interaction. Here we revisit
an attractively simple model for EMI response of a metallic object, namely a hypothetical anisotropic, infinitesi-
mal magnetic dipole characterized by its magnetic polarizability tensor, and investigate the extent to which one
can train a Support Vector Machine (SVM) to produce reliable gross characterization of objects based on the
inferred tensor elements as discriminators. We obtain the frequency-dependent polarizability tensor elements for
various object characteristics by using analytical solutions to the EMI equations. Then, using synthetic data and
focusing on gross shape and especially size, we evaluate the classification success of different SVM formulations
for different kinds of objects.

Keywords: Unexploded ordnance (UXO), magnetoquasistatics, machine learning, Support Vector Machines

1. INTRODUCTION

The presence of unexploded ordnance (UXO) in a variety of settings, from decommissioned firing ranges to
former World War battlefields to countries afflicted with civil war or fighting insurgencies, constitutes a pressing
environmental and humanitarian problem.1 It is estimated that some 10% of artillery containing energetics fail
to explode upon impact. This high “dud rate,” combined with the sheer numbers of ordnance used around the
world, has alarming consequences: millions of acres of land that cannot be inhabited or worked, hundreds of
people killed or maimed every year by objects that explode decades after being fired, contaminated watersheds
and environmental havens, and substantial amounts of money spent in land rehabilitation.

The main reason for the high cost of UXO identification—most of it carried out using ground-penetrating
radar1 or wideband electromagnetic-induction (EMI) detectors2—is the high false-alarm rate: i.e., the need to
have to treat every buried piece of metal as potentially dangerous, be it actual UXO, scrap, rocks with high
metal content, old nails, or any such innocuous items. In other words, the difficulty is not one of detection but
one of discrimination. One could think that this is really not that difficult, since unexploded ordnance, being
bodies of revolution with smooth contours, would be expected to exhibit symmetries not present in irregularly
shaped objects. However, this simplistic picture is complicated by many factors. Predictable ones are the
small signal-to-clutter ratio and the fact that the classification and discrimination of UXO, like other inverse
problems, is in general ill conditioned and plagued by non-uniquenesses. Besides, the EMI response of UXO is
affected by their location and orientation relative to the detector. Also, UXO in general have realistic, finite
electromagnetic parameters and thus are in a régime where few approximations or idealizations can be made.
Not least important, many UXO are actually composite objects, consisting of two or more interlocking pieces
of different materials that yield differing signals under differing excitation and thereby present the detector and
discrimination algorithms with competing and possibly conflicting pieces of information.

On the one hand, then, quite sophisticated forward models are needed to yield a reasonable characterization of
buried UXO; on the other, one would hope to obtain good results within a reasonable timespan, preferably in real
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time. To find a compromise between these clashing aims, in this work we present some considerations relating to
a preliminary version of the first stage of a possible multi-stage discrimination algorithm. This algorithm would
attempt to distinguish promising UXO candidates from other buried items by studying their response to the
primary field of an EMI detector in the light of increasingly elaborate models, both analytic3–5 and numerical,6, 7

while striving to identify the electromagnetic signatures of potentially dangerous hidden objects. In intermediate
steps, a classification procedure could assist and complement these forward models by dismissing false alarms
early in the process using the results of simple but fast discriminators.

As an initial guess we consider that an object responds to the impinging field as would an anisotropic,
infinitesimal magnetic dipole characterized by a magnetic polarizability tensor.1, 8 The dipole model has had
limited success at providing robust discriminators for UXO when used on its own. However, any metallic object
subjected to a primary field develops a dipole moment that must in some way be a result of its characteristics, even
if the infinitesimal dipole model is inadequate for unique predictions of behavior under other excitations. Despite
its limitations, which stem from its simplicity, the dipole model can represent a first stage in discrimination by
potentially enabling us to sort UXO candidates according to their sizes, shapes, or electromagnetic properties.

To classify the polarizability data we use Support Vector Machines (SVMs), an automated “learning by ex-
amples” method that by now is well understood theoretically9 and readily available in fully fledged, thoroughly
tested, and wholly functional implementations.10, 11 SVMs have proved to be a trustworthy and efficient classifi-
cation algorithm in fields where the establishment and identification of patterns is important: handwriting and
facial recognition, bioinformatics, and text categorization, among others. In the context of UXO discrimination,
SVMs are being used ever more often, for example to train computers to draw “risk maps” of areas that might be
contaminated with ordnance.12 A study similar to ours13 has found that SVMs perform well in the classification
of UXO starting from EMI and magnetometer data.

In this paper we evaluate the success of two open-source SVMs in the classification of spheres and prolate
spheroids starting with exact analytical solutions to the EMI equations. In the next section we discuss the
characterization of UXO by means of dipoles, concentrating on the spherical and spheroidal results that we will
use in the rest of the paper. Section 3 contains a brief discussion of the features and operation of Support Vector
Machines. Section 4 describes the discrimination experiments we carried out. We conclude and review some
directions for future work in Section 5.

2. DIPOLE MOMENTS FOR UXO CHARACTERIZATION

EMI detectors work in the magnetoquasistatic régime, where the relatively low frequencies make it permissible
to neglect displacement currents. We consider a body of finite conductivity σ and finite permeability µ ≡ µ0µr

placed in an essentially transparent, nonconducting medium and subjected to a uniform incident field H0 with
time dependence e−iωt. Inside the body, the total field obeys a Helmholtz-diffusion equation with complex
wavenumber: ∇2H(i) + k2H(i) = 0, where k2 = iωµσ. Outside the body, the total field is irrotational and
divergenceless, so we can express it in terms of a scalar potential Φ that obeys the Laplace equation.

After matching the boundary conditions at the surface of the object, we can find the induced dipole moment
of the object by taking the far-field response and making the scalar potential outside equal to

Φ = − 1
4π

m · ∇ 1
R

, (1)

in which case we get a secondary vertical field of the form1, 14

Hz(r) =
1

4πR3

(
3

(
R
R

· ẑ
) (

R
R

·m
)
− m · ẑ

)
(2)

where R ≡ r− r′, r is the observation point, r′ is the dipole location, and the induced dipole moment m defines
the magnetic polarizability tensor B through m = BH0. This tensor is always symmetric and, in the cases
studied below, diagonal. When the tensor is nondiagonal it is always possible to find a set of principal body
axes that define a polarizability ellipsoid related to the orientation of the object. The associated eigenvalues are
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Figure 1. Induced dipole moments of spheres of increasing size due to a unit uniform field. The open circles show the
GEM-3 frequencies that we use to train the SVM. The top panel corresponds to µr = 1 and the bottom one to µr = 100.
The conductivity is 107 in all cases. As discussed in Sec. 4, some patterns are discernible by eye.

always real and, for bodies of revolution, degenerate. It is these elements that we will be using as discriminators
in this work.

The simplest object we can consider is a sphere, which is described by a single dipole moment and whose
polarizability tensor turns out to be3, 14, 15

B = 2πa3
�

(2µr + 1)(1 − ka cotka) − (ka)2

(µr − 1)(1 − ka cotka) + (ka)2
≡ β�, (3)

where a is the sphere radius and k2 = iωµσ as defined above. Figure 1 shows the tensor elements for spheres
with representative sizes and electromagnetic parameters.

The EMI equations have also been solved analytically for spheroids, whose shapes closely approximate those
of most UXO. This exact treatment3–5 parallels that of the sphere but is considerably more involved; results
corresponding to infinite conductivity,4, 16 applicable for high frequencies or high permeabilities, are also available.
We quote some relevant results and refer the interested reader to the literature.

For definiteness we treat a prolate spheroid with semimajor axis b, semiminor axis a, and interfocal dis-
tance d = 2

√
b2 − a2; the ratio e = b/a > 1 is called the elongation. Maxwell’s equations can be solved by

separation of variables in the usual spheroidal coördinates η ∈ [0, π], ξ ∈ [0,∞), and φ ∈ [0, 2π): The field inside
the spheroid can be expanded in vector spheroidal wavefunctions of the first kind,17 the principal field can be
expressed as a series of solutions to the Laplace equation that are regular at the origin, and the secondary field
is expanded in terms of solutions to the Laplace equation that are regular at infinity:

Φs(r) =
1
2
H0d

∞∑
m=0

∞∑
n=0

1∑
p=0

BpmnPm
n (η)Qm

n (ξ) (δp0 cosmφ + δp1 sinmφ), (4)

where Pm
n (η) and Qm

n (ξ) are associated Legendre functions of the first and second kinds respectively and δkl is
the Kronecker delta. For a given principal field, we can find the expansion coefficients Bpmn by matching the
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normal and transverse fields at the surface of the spheroid (specified by ξ0 ≡ e/
√

e2 − 1) and can then express
the polarizability tensor in terms of those. We get

mz = H0

(
πd3

6

)
B001 ≡ βzH0 and mt = H0

(
πd3

3

)
B011 ≡ βtH0 (5)

for the induced axial and transverse dipole moments.

At high frequencies it can be assumed that the spheroid is almost a perfect conductor, and, as a consequence,
the fields in its interior are nonzero only in a thin layer beneath the surface and are essentially normal to it. In
this Small Penetration-Depth Approximation (SPA), the general spheroidal equations become simpler; the dipole
moments they predict are in general very similar to their exact counterparts. This adds a slight inconsistency
to our data, even though the two estimates differ only by a few percent, a minute distortion compared to that
caused by measurement errors in the field.

3. SUPPORT VECTOR MACHINES

Within the context of learning machines (i.e., programs that can be trained by feeding them a series of obser-
vations and their corresponding yes-or-no “answers” and can then use this training to make generalizations and
predictions) Support Vector Machines (SVMs)9, 18, 19 have become increasingly popular for a variety of reasons.
Not only do they require no a priori knowledge about the procedure that generated the data, they are based
on the solid theoretical framework of statistical learning theory, which permits the design of optimal classifiers,
they are sparse, which allows them to solve large problems quickly and with reasonable memory requirements,
and they do their search by means of a constrained quadratic optimization routine that is simple and reliable
and encounters no local optima.

Starting with a set of training observations {xi, yi}, with xi ∈ �
n and yi ∈ {−1, 1}, SVMs strive to find

hyperplanes of the form x ·w + b = 0, where w is a vector normal to the hyperplane and b a scaling factor, that
separate the positive examples from the negative ones by obeying

yi(xi ·w + b) − 1 ≥ 0 ∀i, (6)

and, in particular, will search for the plane with the maximum margin. The margin M of a hyperplane is
M = d− + d+ = 2/‖w‖, where d− (d+) is the shortest distance to the closest negative (positive) example.

To find the separating hyperplane, then, it suffices to maximize M (or, equivalently, minimize ‖w‖) subject
to the constraints (6), which are incorporated via Lagrange multipliers. Once we have found the hyperplane, we
can make predictions: any new x will belong to the class sgn(w · x + b). (On the other hand, it is possible to go
beyond this binary classification and interpolate SVM decisions to obtain a probability distribution.12, 20)

Another parameter that enters the optimization scheme and has to be kept under control is the capacity of
the learning machine—its ability to learn any training set without error.19 Too small a capacity will cause the
SVM to make uninformed decisions; too large a capacity will tend to make it overfit and hence hinder its ability
to generalize. More precisely: to prevent overfitting when starting from a small set of training samples, it is
necessary to limit the complexity of the classifying function. (This is particularly important in the presence of
noise.) It is better to have a relatively simple function that will make some mistakes than one that fits the data
too tightly and will make gross misrepresentations when confronted with other samples.21

To that end, one can “soften the margin” by introducing slack variables ξi corresponding to the constraints
in Eq. (6) and thus turning the problem into

max
w,b,ξ

1
2
‖w‖2 + C

∑
i

ξi

subject to yi(xi ·w + b) ≥ 1 − ξi, (7)
ξi ≥ 0,

where C is the capacity. This quadratic optimization problem is usually solved in its dual form.19
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Support Vectors are those training points with nonzero Lagrange multipliers whose removal would change
the location of the separating hyperplane. In other words, support vectors correspond to the critical points upon
which the machine’s decisions hinge. When doing the classification, the SVM will only keep the information
relating to the support vectors, making the problem sparse.

The decision boundaries will not be, in general, planes, since the relationships may be nonlinear; here is
where kernels come in. A kernel is a mapping Φ : �n 	→ �

m that can help find the hyperplanes for nonlinear
cases by embedding them in a space of higher dimensionality; the sparsity of the problem lets this dimension be
very large. To introduce a kernel one replaces the scalar products in (6) by more-general scalar functions of the
form

x · y → K(x,y) ≡ Φ(x) · Φ(y); (8)

like other authors,13 we have found the Radial Basis Function (RBF) kernel, given by

K(x,y) = exp(−‖x − y‖2/2σ2), (9)

to work best. The Gaussian width σ, like the capacity C, is an adjustable parameter.

Of the various available SVM implementations, we have concentrated on two: SVMlight by T. Joachims10 and
mySVM by S. Rüping.11 In what follows we will evaluate the performance of these two programs in classifying
spheres and spheroids by size and shape based on their dipole moments.

4. EXPERIMENTS AND RESULTS

In the numerical experiments that follow we have kept the frequencies fixed at values typically measured by the
GEM-3 detector:2f ∈ {30, 90, 210, 810, 10950} Hz, shown as open circles in Fig. 1. We have avoided the highest
GEM-3 frequencies, which have been found to yield unreliable results in field measurements.

As we saw in Section 2, a sphere has a single-element polarizability tensor, which depends on its size,
conductivity, and permeability. As the top panels of Fig. 1 show for the case µ = µ0, it is possible to discern by
eye some patterns in the variation of the dipole moment with sphere radius. We can see that the in-phase and
quadrature parts complement each other: the real parts show greater differences at higher frequencies, where
the imaginary parts change less with size, and the imaginary parts vary more at lower frequencies, where the
real parts change less. This general pattern is also noticeable for higher permeabilities, as the bottom panels of
Fig. 1 show for µ = 100µ0. Note that some cases where two different frequencies would yield a similar pattern
in the imaginary part (at opposite sides of its maximum) actually show opposing variations in the real part. We
expect the SVMs to be able to use this information.

In one experiment we use 200 training samples, with radii between 2.5 and 50 cm and permeabilities and
conductivities random within a generous range, and then subject the SVMs to 2300 tests, inquiring whether
a ≥ 25 cm. We get success rates (defined as the ratio of correct answers to total number of tests) of about 97.7%,
regardless of the algorithm used; the following is a typical breakdown:

SVMlight Predicted
True ↓ +1 −1

+1 991 38
−1 15 1256

mySVM Predicted
True ↓ +1 −1

+1 1008 21
−1 32 1239

(10)

We have also studied upright prolate spheroids under axial (parallel to ẑ) or transverse (perpendicular to
ẑ) uniform excitation,3–5 respectively using βz and βt as discriminators. The patterns are less apparent in
the presence of variable elongation, but some can still be found, mostly having to do with the quadrature
(imaginary) response of the target:6 In general we expect axial excitation to give a better idea of the target size,
while transverse excitation should be superior as a discriminator of elongation.

We have used the program sphemi5 to generate the dipole moments. When the solutions fail to converge
(something that tends to happen at higher frequencies and is a consequence of finite machine precision), sphemi
generates dipole moments in the SPA approximation, as described at the end of Sec. 2.
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Excitation Classification SVMlight mySVM
Axial 2a < 0.06 m 87.00 90.62
Transverse 2a < 0.06 m 89.75 95.12
Axial and transverse 2a < 0.06 m 86.12 95.00
Axial e < 2.5 62.25 69.50
Transverse e < 2.5 62.38 58.00
Axial and transverse e < 2.5 61.50 70.50

Table 1. SVM success rates (in percentage) for spheroids.

We have generated two data files: a 1000-sample training file and a 250-sample test file. In both of these,
we let the diameter 2a vary at random between 2a = 0.015 m and 2a = 0.15 m and the elongation between
e = 1.001 and e = 5; the relative permeability varies at random between µr = 50 and µr = 150, except that a
third of the samples have µr = 1. The conductivity is fixed at random at either σ = 106 S/m or σ = 107 S/m.

We first take the training file and ask the SVMs to discriminate by diameter and elongation for increasing
values of these parameters, using axial data, transverse data, and both axial and transverse data. We use 200
training samples and 800 testing samples in each case. The results appear in Fig. 2. We can see that the
classification by size is much more successful than that by elongation; it should be recalled when looking at the
figure that a success rate of 50% corresponds to blind guessing. Also, the programs perform better at the ends of
the range; this is not surprising, since in those cases most of the training samples have the same yes-or-no answer.
Having both axial and transverse data tends to improve the performance, though not in all cases. Moreover, we
can see, just as we expected, that transverse data is better than axial data for diameter discrimination. The
opposite happens when studying elongation: axial data is more useful than transverse data. Table 1 gives some
results in more detail.

Volume should be a robust discriminator, since it varies as the cube of the radius and only linearly with
elongation. In our next experiment we want to see if it is possible to “overeducate” the SVM: i.e., we want to
know how the success rate is affected as the number of training samples increases beyond a certain point (we
expect it to grow at the beginning, of course). We run both SVMs on our test file using sets of training samples
ranging in size from 50 to 950 and ask them to determine if a given test sample has “volume” (defined here
as V = (2a)3e) larger than half the median, the median, twice the median, or four times the median within the
testing file. In all cases we use both axial and transverse data. The results are in Fig. 3. We see that, as in
Fig. 2, SVMlight gives the best results for very large volumes, while mySVM tends to perform as well or better
in all other cases; the success rate stabilizes and does not degenerate with more training samples.

5. CONCLUSION

In this paper we have studied the degree to which one can train a Support Vector Machine to aid in the
identification of unexploded ordnance by providing a fast classification scheme that will filter out promising UXO
candidates that can then be explored using more-elaborate forward models. We have seen that the two open-
source implementations yield reasonable estimates (especially regarding size) when fed synthetic data resulting
from analytic solutions to the EMI equations.

In the experiments we have run we have seen that, even though SVMlight may fare better than mySVM for
some classification tasks, mySVM is in general more effective and more efficient than SVMlight. Moreover, we
have noticed that SVMlight takes a very long time to yield an answer in some instances, while mySVM never
does. This seems to be a limitation inherent to SVMlight—since the program performs well when it is restarted
and run with the same data sets—and it hampers its performance and reliability.

We note once again that the capacity C of the SVM and the width σ of the RBF kernel are adjustable
parameters. In this paper we have kept them fixed at C = 4000 and σ = 2, the recommended values. In
future work it should be possible to tweak these parameters to optimize the programs’ performance even further.
Moreover, it is possible and necessary to incorporate other data, both synthetic6, 7 and measured, that can be
used by the program to enhance its decision-making capability.
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Figure 2. Success rates of SVMlight (dashed lines, left) and mySVM (full lines, right) in discriminating spheroids by
diameter (top) and by elongation (bottom) for increasing values of these parameters using axial data only (circles),
transverse data only (squares), and both axial and transverse data (diamonds). All experiments use 200 training samples
and 800 tests.
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